Internal
problem
ID
[4300]
Book
:
An
introduction
to
the
solution
and
applications
of
differential
equations,
J.W.
Searl,
1966
Section
:
Chapter
4,
Ex.
4.1
Problem
number
:
6
Date
solved
:
Tuesday, March 04, 2025 at 06:10:03 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
With initial conditions
ode:=x/(x^2+y(x)^2)+y(x)/x^2+(y(x)/(x^2+y(x)^2)-1/x)*diff(y(x),x) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(x/(x^2+y[x]^2)+y[x]/x^2)+(y[x]/(x^2+y[x]^2)-1/x)*D[y[x],x]==0; ic=y[1]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/(x**2 + y(x)**2) + (y(x)/(x**2 + y(x)**2) - 1/x)*Derivative(y(x), x) + y(x)/x**2,0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)