Internal
problem
ID
[4741]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
5
Problem
number
:
141
Date
solved
:
Monday, January 27, 2025 at 09:36:03 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
Time used: 0.010 (sec). Leaf size: 108
\[
\frac {2 \left (x^{2}-3 y \left (x \right )\right )^{{3}/{2}} \left (c_{1} y \left (x \right )^{2} x^{2}-4 c_{1} y \left (x \right )^{3}+1\right )+2 x \left (x^{2}-\frac {9 y \left (x \right )}{2}\right ) \left (c_{1} y \left (x \right )^{2} x^{2}-4 c_{1} y \left (x \right )^{3}-1\right )}{\left (x^{2}-4 y \left (x \right )\right ) y \left (x \right )^{2} \left (-2 \sqrt {x^{2}-3 y \left (x \right )}+x \right ) \left (x +\sqrt {x^{2}-3 y \left (x \right )}\right )^{2}} = 0
\]
Time used: 60.184 (sec). Leaf size: 499
\begin{align*}
y(x)\to \frac {1}{12} \left (x^2+\frac {x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}+\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{24} \left (2 x^2-\frac {i \left (\sqrt {3}-i\right ) x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{24} \left (2 x^2+\frac {i \left (\sqrt {3}+i\right ) x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}-\left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
\end{align*}