28.1.56 problem 57

Internal problem ID [4362]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 57
Date solved : Tuesday, March 04, 2025 at 06:33:07 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} 1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 39
ode:=1-(1+2*x*tan(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {2 x \cos \left (2 y \left (x \right )\right )-2 y \left (x \right )-\sin \left (2 y \left (x \right )\right )+c_{1} +2 x}{2 \cos \left (2 y \left (x \right )\right )+2} = 0 \]
Mathematica. Time used: 0.142 (sec). Leaf size: 36
ode=1-(1+2*x*Tan[y[x]])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=\left (\frac {y(x)}{2}+\frac {1}{4} \sin (2 y(x))\right ) \sec ^2(y(x))+c_1 \sec ^2(y(x)),y(x)\right ] \]
Sympy. Time used: 11.226 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x*tan(y(x)) - 1)*Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} + x \cos ^{2}{\left (y{\left (x \right )} \right )} - \frac {y{\left (x \right )}}{2} - \frac {\sin {\left (y{\left (x \right )} \right )} \cos {\left (y{\left (x \right )} \right )}}{2} = 0 \]