29.6.19 problem 165

Internal problem ID [4765]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 6
Problem number : 165
Date solved : Monday, January 27, 2025 at 09:36:46 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }-y+y^{2}&=x^{{2}/{3}} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 72

dsolve(x*diff(y(x),x)-y(x)+y(x)^2 = x^(2/3),y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {x^{{1}/{3}} \left (c_{1} {\mathrm e}^{6 x^{{1}/{3}}} \operatorname {abs}\left (1, 3 x^{{1}/{3}}-1\right )+c_{1} {\mathrm e}^{6 x^{{1}/{3}}} {| 3 x^{{1}/{3}}-1|}-3 x^{{1}/{3}}\right )}{c_{1} {\mathrm e}^{6 x^{{1}/{3}}} {| 3 x^{{1}/{3}}-1|}+3 x^{{1}/{3}}+1} \]

Solution by Mathematica

Time used: 0.205 (sec). Leaf size: 131

DSolve[x D[y[x],x]-y[x]+y[x]^2==x^(2/3),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {3 x^{2/3} \left (c_1 \cosh \left (3 \sqrt [3]{x}\right )-i \sinh \left (3 \sqrt [3]{x}\right )\right )}{\left (-3 i \sqrt [3]{x}-c_1\right ) \cosh \left (3 \sqrt [3]{x}\right )+\left (3 c_1 \sqrt [3]{x}+i\right ) \sinh \left (3 \sqrt [3]{x}\right )} \\ y(x)\to \frac {3 x^{2/3} \cosh \left (3 \sqrt [3]{x}\right )}{3 \sqrt [3]{x} \sinh \left (3 \sqrt [3]{x}\right )-\cosh \left (3 \sqrt [3]{x}\right )} \\ \end{align*}