Internal
problem
ID
[4442]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
159
Date
solved
:
Tuesday, March 04, 2025 at 06:44:06 PM
CAS
classification
:
[`x=_G(y,y')`]
ode:=2*x*y(x)^4*exp(y(x))+2*x*y(x)^3+y(x)+(x^2*y(x)^4*exp(y(x))-x^2*y(x)^2-3*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]^4*Exp[y[x]]+2*x*y[x]^3+y[x])+(x^2*y[x]^4*Exp[y[x]]-x^2*y[x]^2-3*x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**4*exp(y(x)) + 2*x*y(x)**3 + (x**2*y(x)**4*exp(y(x)) - x**2*y(x)**2 - 3*x)*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out