29.10.3 problem 269

Internal problem ID [4869]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 269
Date solved : Monday, January 27, 2025 at 09:45:42 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{4} y^{2} \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 111

dsolve(x^2*diff(y(x),x) = a+b*x*y(x)+c*x^4*y(x)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = -\frac {a \left (\operatorname {BesselY}\left (-\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right ) c_{1} +\operatorname {BesselJ}\left (-\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right )\right )}{x \left (x \sqrt {a c}\, \left (\operatorname {BesselY}\left (\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right )\right )+\left (b +1\right ) \left (\operatorname {BesselY}\left (-\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right ) c_{1} +\operatorname {BesselJ}\left (-\frac {1}{2}-\frac {b}{2}, x \sqrt {a c}\right )\right )\right )} \]

Solution by Mathematica

Time used: 0.329 (sec). Leaf size: 394

DSolve[x^2 D[y[x],x]==a+b x y[x]+c x^4 y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {a} \sqrt {c} x \operatorname {BesselY}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+(b+3) \operatorname {BesselY}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} x \operatorname {BesselY}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )+\sqrt {a} \sqrt {c} c_1 x \operatorname {BesselJ}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+b c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )+3 c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} c_1 x \operatorname {BesselJ}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )}{2 c x^3 \left (\operatorname {BesselY}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )+c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )\right )} \\ y(x)\to -\frac {\sqrt {a} \sqrt {c} x \operatorname {BesselJ}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+(b+3) \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} x \operatorname {BesselJ}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )}{2 c x^3 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )} \\ \end{align*}