29.10.6 problem 272

Internal problem ID [4872]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 272
Date solved : Tuesday, January 28, 2025 at 02:39:57 PM
CAS classification : [_rational, _Abel]

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 148

dsolve(x^2*diff(y(x),x) = a*x^2*y(x)^2-a*y(x)^3,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {1}{-a x -2^{{2}/{3}} \left (-a \right )^{{2}/{3}} \operatorname {RootOf}\left (\operatorname {AiryBi}\left (\frac {\left (\textit {\_Z}^{2} 2^{{1}/{3}} \left (-a \right )^{{1}/{3}} x -1\right ) 2^{{2}/{3}}}{2 \left (-a \right )^{{1}/{3}} x}\right ) c_{1} \textit {\_Z} +\textit {\_Z} \operatorname {AiryAi}\left (\frac {\left (\textit {\_Z}^{2} 2^{{1}/{3}} \left (-a \right )^{{1}/{3}} x -1\right ) 2^{{2}/{3}}}{2 \left (-a \right )^{{1}/{3}} x}\right )+\operatorname {AiryBi}\left (1, \frac {\left (\textit {\_Z}^{2} 2^{{1}/{3}} \left (-a \right )^{{1}/{3}} x -1\right ) 2^{{2}/{3}}}{2 \left (-a \right )^{{1}/{3}} x}\right ) c_{1} +\operatorname {AiryAi}\left (1, \frac {\left (\textit {\_Z}^{2} 2^{{1}/{3}} \left (-a \right )^{{1}/{3}} x -1\right ) 2^{{2}/{3}}}{2 \left (-a \right )^{{1}/{3}} x}\right )\right )} \]

Solution by Mathematica

Time used: 0.429 (sec). Leaf size: 267

DSolve[x^2 D[y[x],x]==a x^2 y[x]^2-a y[x]^3,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {\left (-\frac {1}{2^{2/3} a^{2/3} y(x)}-\frac {\sqrt [3]{a} x}{2^{2/3}}\right ) \operatorname {AiryAi}\left (\left (-\frac {\sqrt [3]{a} x}{2^{2/3}}-\frac {1}{2^{2/3} a^{2/3} y(x)}\right )^2+\frac {1}{\sqrt [3]{2} \sqrt [3]{a} x}\right )+\operatorname {AiryAiPrime}\left (\left (-\frac {\sqrt [3]{a} x}{2^{2/3}}-\frac {1}{2^{2/3} a^{2/3} y(x)}\right )^2+\frac {1}{\sqrt [3]{2} \sqrt [3]{a} x}\right )}{\left (-\frac {1}{2^{2/3} a^{2/3} y(x)}-\frac {\sqrt [3]{a} x}{2^{2/3}}\right ) \operatorname {AiryBi}\left (\left (-\frac {\sqrt [3]{a} x}{2^{2/3}}-\frac {1}{2^{2/3} a^{2/3} y(x)}\right )^2+\frac {1}{\sqrt [3]{2} \sqrt [3]{a} x}\right )+\operatorname {AiryBiPrime}\left (\left (-\frac {\sqrt [3]{a} x}{2^{2/3}}-\frac {1}{2^{2/3} a^{2/3} y(x)}\right )^2+\frac {1}{\sqrt [3]{2} \sqrt [3]{a} x}\right )}+c_1=0,y(x)\right ] \]