29.10.18 problem 284

Internal problem ID [4884]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 284
Date solved : Monday, January 27, 2025 at 09:46:22 AM
CAS classification : [_linear]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 66

dsolve((-x^2+1)*diff(y(x),x)-x^2+x*y(x) = 0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\sqrt {x -1}\, \sqrt {x +1}\, c_{1} \sqrt {x^{2}-1}-\ln \left (x +\sqrt {x^{2}-1}\right ) x^{2}+\sqrt {x^{2}-1}\, x +\ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x^{2}-1}} \]

Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 34

DSolve[(1-x^2)D[y[x],x]-x^2 +x y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to -\sqrt {1-x^2} \arcsin (x)+c_1 \sqrt {x^2-1}+x \]