Internal
problem
ID
[4518]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
6.
The
Laplace
Transform
and
Its
Applications.
Problems
at
page
291
Problem
number
:
6.40
Date
solved
:
Tuesday, March 04, 2025 at 06:50:56 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 4*exp(-t)+2*exp(t); ic:=y(0) = -1, D(y)(0) = 2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]+y[t]==4*Exp[-t]+2*Exp[t]; ic={y[0]==-1,Derivative[1][y][0] == 2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 2*exp(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 4*exp(-t),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)