Internal
problem
ID
[4523]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
6.
The
Laplace
Transform
and
Its
Applications.
Problems
at
page
291
Problem
number
:
6.45
Date
solved
:
Tuesday, March 04, 2025 at 06:51:01 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+y(t) = 2*sin(t)*Heaviside(t-Pi); ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+y[t]==2*Sin[t]*UnitStep[t-Pi]; ic={y[0]==1,Derivative[1][y][0] == 0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 2*sin(t)*Heaviside(t - pi) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)