Internal
problem
ID
[4534]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.2
Date
solved
:
Tuesday, March 04, 2025 at 06:51:59 PM
CAS
classification
:
system_of_ODEs
ode:=[2*diff(x(t),t)+x(t)-5*diff(y(t),t)-4*y(t) = 0, -diff(y(t),t)-2*x(t)+y(t) = 0]; dsolve(ode);
ode={2*D[x[t],t]+x[t]-5*D[y[t],t]-4*y[t]==0,3*D[y[t],t]-2*x[t]-4*D[y[t],t]+y[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) - 4*y(t) + 2*Derivative(x(t), t) - 5*Derivative(y(t), t),0),Eq(-2*x(t) + y(t) - Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)