28.5.4 problem 9.4

Internal problem ID [4591]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 9. Series Solutions of Differential Equations. Problems at page 426
Problem number : 9.4
Date solved : Tuesday, March 04, 2025 at 06:56:08 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 39
Order:=6; 
ode:=(-x^2+1)*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (1-\frac {1}{2} x^{2}-\frac {1}{24} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}-\frac {1}{24} x^{5}\right ) D\left (y \right )\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 42
ode=(1-x^2)*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{24}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {x^4}{24}-\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 0.779 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x**2)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{4}}{24} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{2}}{6}\right ) + O\left (x^{6}\right ) \]