28.5.6 problem 9.6

Internal problem ID [4593]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 9. Series Solutions of Differential Equations. Problems at page 426
Problem number : 9.6
Date solved : Tuesday, March 04, 2025 at 06:56:10 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 x^{2} y^{\prime }+x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 29
Order:=6; 
ode:=diff(diff(y(x),x),x)-2*x^2*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (1-\frac {x^{3}}{6}\right ) y \left (0\right )+\left (x +\frac {1}{12} x^{4}\right ) D\left (y \right )\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 28
ode=D[y[x],{x,2}]-2*x^2*D[y[x],x]+x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^4}{12}+x\right )+c_1 \left (1-\frac {x^3}{6}\right ) \]
Sympy. Time used: 0.719 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2*Derivative(y(x), x) + x*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (1 - \frac {x^{3}}{6}\right ) + C_{1} x \left (\frac {x^{3}}{12} + 1\right ) + O\left (x^{6}\right ) \]