29.14.3 problem 382

Internal problem ID [4982]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 14
Problem number : 382
Date solved : Monday, January 27, 2025 at 10:00:58 AM
CAS classification : [_Riccati]

\begin{align*} x^{n} y^{\prime }&=x^{2 n -1}-y^{2} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 80

dsolve(x^n*diff(y(x),x) = x^(2*n-1)-y(x)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\left (\operatorname {BesselK}\left (n , 2 \sqrt {x}\right ) c_{1} -\operatorname {BesselI}\left (n , 2 \sqrt {x}\right )\right ) x^{n}}{-\operatorname {BesselI}\left (n +1, 2 \sqrt {x}\right ) \sqrt {x}-\sqrt {x}\, \operatorname {BesselK}\left (n +1, 2 \sqrt {x}\right ) c_{1} +n \left (\operatorname {BesselK}\left (n , 2 \sqrt {x}\right ) c_{1} -\operatorname {BesselI}\left (n , 2 \sqrt {x}\right )\right )} \]

Solution by Mathematica

Time used: 0.383 (sec). Leaf size: 293

DSolve[x^n D[y[x],x]==x^(2 n -1)-y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x^{n-1} \left (-\left ((n-1) \operatorname {Gamma}(2-n) \operatorname {BesselI}\left (1-n,2 \sqrt {x}\right )\right )+\sqrt {x} \operatorname {Gamma}(2-n) \operatorname {BesselI}\left (2-n,2 \sqrt {x}\right )+\sqrt {x} \operatorname {Gamma}(2-n) \operatorname {BesselI}\left (-n,2 \sqrt {x}\right )-c_1 (-1)^n \sqrt {x} \operatorname {Gamma}(n) \operatorname {BesselI}\left (n-2,2 \sqrt {x}\right )-c_1 (-1)^n \operatorname {Gamma}(n) \operatorname {BesselI}\left (n-1,2 \sqrt {x}\right )+c_1 (-1)^n n \operatorname {Gamma}(n) \operatorname {BesselI}\left (n-1,2 \sqrt {x}\right )-c_1 (-1)^n \sqrt {x} \operatorname {Gamma}(n) \operatorname {BesselI}\left (n,2 \sqrt {x}\right )\right )}{2 \left (\operatorname {Gamma}(2-n) \operatorname {BesselI}\left (1-n,2 \sqrt {x}\right )-c_1 (-1)^n \operatorname {Gamma}(n) \operatorname {BesselI}\left (n-1,2 \sqrt {x}\right )\right )} \\ y(x)\to \frac {x^{n-1} \left (\sqrt {x} \operatorname {BesselI}\left (n-2,2 \sqrt {x}\right )-(n-1) \operatorname {BesselI}\left (n-1,2 \sqrt {x}\right )+\sqrt {x} \operatorname {BesselI}\left (n,2 \sqrt {x}\right )\right )}{2 \operatorname {BesselI}\left (n-1,2 \sqrt {x}\right )} \\ \end{align*}