29.14.14 problem 395

Internal problem ID [4993]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 14
Problem number : 395
Date solved : Monday, January 27, 2025 at 10:01:58 AM
CAS classification : [_separable]

\begin{align*} x y^{\prime } \sqrt {a^{2}+x^{2}}&=y \sqrt {b^{2}+y^{2}} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 79

dsolve(x*diff(y(x),x)*sqrt(a^2+x^2) = y(x)*sqrt(b^2+y(x)^2),y(x), singsol=all)
 
\[ \frac {-\operatorname {csgn}\left (a \right ) b \ln \left (2\right )-\operatorname {csgn}\left (a \right ) b \ln \left (\frac {a \left (\operatorname {csgn}\left (a \right ) \sqrt {a^{2}+x^{2}}+a \right )}{x}\right )+\operatorname {csgn}\left (b \right ) a \ln \left (2\right )+\operatorname {csgn}\left (b \right ) a \ln \left (\frac {b \left (\operatorname {csgn}\left (b \right ) \sqrt {b^{2}+y \left (x \right )^{2}}+b \right )}{y \left (x \right )}\right )+c_{1} a b}{a b} = 0 \]

Solution by Mathematica

Time used: 44.311 (sec). Leaf size: 276

DSolve[x D[y[x],x] Sqrt[a^2+x^2]==y[x] Sqrt[b^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {2 i b^{3/2} e^{b c_1} \left (a \left (a-\sqrt {a^2+x^2}\right )\right )^{\frac {b}{2 a}} \left (\sqrt {a^2+x^2}+a\right )^{\frac {b}{2 a}}}{\sqrt {\left (b \left (\sqrt {a^2+x^2}+a\right )^{\frac {b}{a}}+e^{2 b c_1} \left (a \left (a-\sqrt {a^2+x^2}\right )\right )^{\frac {b}{a}}\right ){}^2}} \\ y(x)\to \frac {2 i b^{3/2} e^{b c_1} \left (a \left (a-\sqrt {a^2+x^2}\right )\right )^{\frac {b}{2 a}} \left (\sqrt {a^2+x^2}+a\right )^{\frac {b}{2 a}}}{\sqrt {\left (b \left (\sqrt {a^2+x^2}+a\right )^{\frac {b}{a}}+e^{2 b c_1} \left (a \left (a-\sqrt {a^2+x^2}\right )\right )^{\frac {b}{a}}\right ){}^2}} \\ y(x)\to 0 \\ y(x)\to -i b \\ y(x)\to i b \\ \end{align*}