29.1.8 problem 7

Internal problem ID [4615]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 1
Problem number : 7
Date solved : Tuesday, March 04, 2025 at 06:56:42 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=x \left (x^{2}-y\right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(y(x),x) = x*(x^2-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = x^{2}-2+{\mathrm e}^{-\frac {x^{2}}{2}} c_{1} \]
Mathematica. Time used: 0.052 (sec). Leaf size: 22
ode=D[y[x],x]==x*(x^2-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2+c_1 e^{-\frac {x^2}{2}}-2 \]
Sympy. Time used: 0.234 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(x**2 - y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {x^{2}}{2}} + x^{2} - 2 \]