29.2.14 problem 39

Internal problem ID [4647]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 2
Problem number : 39
Date solved : Tuesday, March 04, 2025 at 07:00:19 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 44
ode:=diff(y(x),x) = x^2-y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_{1} -\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{c_{1} \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Mathematica. Time used: 0.168 (sec). Leaf size: 197
ode=D[y[x],x]==x^2 - y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {-i x^2 \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+c_1 \left (\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )-\operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )} \\ y(x)\to \frac {i x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list