29.15.26 problem 434

Internal problem ID [5032]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 434
Date solved : Monday, January 27, 2025 at 10:04:50 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y\right ) y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 35

dsolve((x+y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -x -\sqrt {x^{2}+2 c_{1}} \\ y \left (x \right ) &= -x +\sqrt {x^{2}+2 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.534 (sec). Leaf size: 84

DSolve[(x+y[x])D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x-\sqrt {x^2+e^{2 c_1}} \\ y(x)\to -x+\sqrt {x^2+e^{2 c_1}} \\ y(x)\to 0 \\ y(x)\to -\sqrt {x^2}-x \\ y(x)\to \sqrt {x^2}-x \\ \end{align*}