29.15.29 problem 437

Internal problem ID [5035]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 437
Date solved : Monday, January 27, 2025 at 10:05:02 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y\right ) y^{\prime }&=x -y \end{align*}

Solution by Maple

Time used: 0.441 (sec). Leaf size: 51

dsolve((x+y(x))*diff(y(x),x) = x-y(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {-c_{1} x -\sqrt {2 c_{1}^{2} x^{2}+1}}{c_{1}} \\ y \left (x \right ) &= \frac {-c_{1} x +\sqrt {2 c_{1}^{2} x^{2}+1}}{c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.487 (sec). Leaf size: 94

DSolve[(x+y[x])D[y[x],x]==x-y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x-\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -x+\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -\sqrt {2} \sqrt {x^2}-x \\ y(x)\to \sqrt {2} \sqrt {x^2}-x \\ \end{align*}