29.17.4 problem 463

Internal problem ID [5061]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 17
Problem number : 463
Date solved : Monday, January 27, 2025 at 10:07:07 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +2 y\right ) y^{\prime }+2 x -y&=0 \end{align*}

Solution by Maple

Time used: 0.021 (sec). Leaf size: 22

dsolve((x+2*y(x))*diff(y(x),x)+2*x-y(x) = 0,y(x), singsol=all)
 
\[ y \left (x \right ) = \tan \left (\operatorname {RootOf}\left (\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+\textit {\_Z} +2 \ln \left (x \right )+2 c_{1} \right )\right ) x \]

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 30

DSolve[(x+2 y[x])D[y[x],x]+2 x -y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\arctan \left (\frac {y(x)}{x}\right )+\log \left (\frac {y(x)^2}{x^2}+1\right )=-2 \log (x)+c_1,y(x)\right ] \]