29.3.19 problem 73

Internal problem ID [4681]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 3
Problem number : 73
Date solved : Tuesday, March 04, 2025 at 07:02:33 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 35
ode:=diff(y(x),x) = y(x)*sec(x)+(sin(x)-1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (-3 \sin \left (x \right )+4 \ln \left (\sec \left (x \right )+\tan \left (x \right )\right )+4 \ln \left (\cos \left (x \right )\right )-\frac {\cos \left (2 x \right )}{4}+c_{1} \right ) \left (\sec \left (x \right )+\tan \left (x \right )\right ) \]
Mathematica. Time used: 12.261 (sec). Leaf size: 55
ode=D[y[x],x]==y[x] Sec[x]+(Sin[x]-1)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {1}{4} e^{2 \text {arctanh}\left (\tan \left (\frac {x}{2}\right )\right )} (\cos (2 x)+4 (4 i x+3 \sin (x)-8 \log (\cos (x)+i (\sin (x)+1))-c_1)) \]
Sympy. Time used: 141.595 (sec). Leaf size: 143
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(sin(x) - 1)**2 - y(x)/cos(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\sqrt {\sin {\left (x \right )} + 1} \left (C_{1} + \int \frac {\sqrt {\sin {\left (x \right )} - 1}}{\sqrt {\sin {\left (x \right )} + 1}}\, dx - 2 \int \frac {\sqrt {\sin {\left (x \right )} - 1} \sin {\left (x \right )}}{\sqrt {\sin {\left (x \right )} + 1}}\, dx + \int \frac {\sqrt {\sin {\left (x \right )} - 1} \sin ^{2}{\left (x \right )}}{\sqrt {\sin {\left (x \right )} + 1}}\, dx + \int \frac {\sqrt {\sin {\left (x \right )} - 1} y{\left (x \right )}}{\sqrt {\sin {\left (x \right )} + 1} \cos {\left (x \right )}}\, dx\right )}{\sqrt {\sin {\left (x \right )} - 1} + \sqrt {\sin {\left (x \right )} + 1} \int \frac {\sqrt {\sin {\left (x \right )} - 1}}{\sqrt {\sin {\left (x \right )} + 1} \cos {\left (x \right )}}\, dx} \]