29.3.23 problem 77

Internal problem ID [4685]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 3
Problem number : 77
Date solved : Friday, March 14, 2025 at 01:27:34 AM
CAS classification : [_Abel]

\begin{align*} y^{\prime }+\left (a x +y\right ) y^{2}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 71
ode:=diff(y(x),x)+(a*x+y(x))*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {2 a}{a^{2} x^{2}+2 \operatorname {RootOf}\left (2^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} \operatorname {AiryBi}\left (\textit {\_Z} \right ) c_{1} x +2^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} x \operatorname {AiryAi}\left (\textit {\_Z} \right )+2 \operatorname {AiryBi}\left (1, \textit {\_Z}\right ) c_{1} +2 \operatorname {AiryAi}\left (1, \textit {\_Z}\right )\right ) 2^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}}} \]
Mathematica. Time used: 0.235 (sec). Leaf size: 195
ode=D[y[x],x]+(a x+y[x])y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\operatorname {AiryAiPrime}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \operatorname {AiryAi}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}{\operatorname {AiryBiPrime}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \operatorname {AiryBi}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq((a*x + y(x))*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded