Internal
problem
ID
[4693]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
4
Problem
number
:
87
Date
solved
:
Tuesday, March 04, 2025 at 07:04:26 PM
CAS
classification
:
[_Bernoulli]
ode:=diff(y(x),x)+2*x*y(x)*(1+a*x*y(x)^2) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+2 x y[x](1+ a x y[x]^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(2*x*(a*x*y(x)**2 + 1)*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)