Internal
problem
ID
[5090]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
18
Problem
number
:
492
Date
solved
:
Monday, January 27, 2025 at 10:10:23 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
Time used: 3.842 (sec). Leaf size: 29
\[
y \left (x \right ) = \frac {\sqrt {9+\left (-8 x -8\right ) c_{1}}-3+\left (4 x -4\right ) c_{1}}{8 c_{1}}
\]
Time used: 60.169 (sec). Leaf size: 1177
\begin{align*}
y(x)\to \frac {1}{6} \left (x+\frac {2 (x+1)}{x \sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+\sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+1}-5\right ) \\
y(x)\to \frac {1}{6} \left (x-\frac {2 (x+1)}{x \sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+\sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-1}-5\right ) \\
y(x)\to \frac {1}{6} \left (x+\frac {2 (x+1)}{x \sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+\sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+1}-5\right ) \\
y(x)\to \frac {1}{6} \left (x-\frac {2 (x+1)}{x \sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+\sqrt {\frac {3}{(x+1)^2}-\frac {3 (x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(x+1)^2 \left ((x+1)^2 \cosh \left (\frac {4 c_1}{9}\right )+(x+1)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-1}-5\right ) \\
\end{align*}