29.19.16 problem 529

Internal problem ID [5125]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 19
Problem number : 529
Date solved : Monday, January 27, 2025 at 10:13:09 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.047 (sec). Leaf size: 59

dsolve(x*(x-y(x))*diff(y(x),x)+2*x^2+3*x*y(x)-y(x)^2 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {c_{1} x^{2}-\sqrt {2 c_{1}^{2} x^{4}+1}}{c_{1} x} \\ y \left (x \right ) &= \frac {c_{1} x^{2}+\sqrt {2 c_{1}^{2} x^{4}+1}}{c_{1} x} \\ \end{align*}

Solution by Mathematica

Time used: 0.720 (sec). Leaf size: 99

DSolve[x(x-y[x])D[y[x],x]+2 x^2+3 x y[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x-\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x+\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x-\frac {\sqrt {2} \sqrt {x^4}}{x} \\ y(x)\to \frac {\sqrt {2} \sqrt {x^4}}{x}+x \\ \end{align*}