29.6.2 problem 148

Internal problem ID [4748]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 6
Problem number : 148
Date solved : Tuesday, March 04, 2025 at 07:13:42 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }&=x \sin \left (x \right )-y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=x*diff(y(x),x) = x*sin(x)-y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\sin \left (x \right )-\cos \left (x \right ) x +c_{1}}{x} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 19
ode=x D[y[x],x]==x Sin[x]-y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sin (x)-x \cos (x)+c_1}{x} \]
Sympy. Time used: 0.279 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sin(x) + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} - \cos {\left (x \right )} + \frac {\sin {\left (x \right )}}{x} \]