29.6.15 problem 161

Internal problem ID [4761]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 6
Problem number : 161
Date solved : Tuesday, March 04, 2025 at 07:14:08 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }&=a x -\left (-b \,x^{2}+1\right ) y \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=x*diff(y(x),x) = a*x-(-b*x^2+1)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {{\mathrm e}^{\frac {b \,x^{2}}{2}} c_{1} b -a}{b x} \]
Mathematica. Time used: 0.083 (sec). Leaf size: 30
ode=x D[y[x],x]==a x-(1-b x^2)y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {-a+b c_1 e^{\frac {b x^2}{2}}}{b x} \]
Sympy. Time used: 0.375 (sec). Leaf size: 53
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*x + x*Derivative(y(x), x) + (-b*x**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} \frac {C_{1} e^{\frac {b x^{2}}{2}}}{x} - \frac {a}{b x} & \text {for}\: b \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {C_{1}}{2 b x^{3} - 6 x} - \frac {3 a x^{2}}{2 b x^{3} - 6 x} & \text {for}\: b = 0 \\\text {NaN} & \text {otherwise} \end {cases}\right ] \]