29.7.5 problem 180

Internal problem ID [4780]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 7
Problem number : 180
Date solved : Tuesday, March 04, 2025 at 07:15:08 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }+a \,x^{2} y^{2}+2 y&=b \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 68
ode:=x*diff(y(x),x)+a*x^2*y(x)^2+2*y(x) = b; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\left (-\operatorname {BesselY}\left (1, \sqrt {-a b}\, x \right ) c_{1} -\operatorname {BesselJ}\left (1, \sqrt {-a b}\, x \right )\right ) \sqrt {-a b}}{a x \left (c_{1} \operatorname {BesselY}\left (0, \sqrt {-a b}\, x \right )+\operatorname {BesselJ}\left (0, \sqrt {-a b}\, x \right )\right )} \]
Mathematica. Time used: 0.237 (sec). Leaf size: 158
ode=x D[y[x],x]+a x^2 y[x]^2+2 y[x]==b; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {i \sqrt {b} \left (\operatorname {BesselY}\left (1,-i \sqrt {a} \sqrt {b} x\right )-c_1 \operatorname {BesselJ}\left (1,i \sqrt {a} \sqrt {b} x\right )\right )}{\sqrt {a} x \left (\operatorname {BesselY}\left (0,-i \sqrt {a} \sqrt {b} x\right )+c_1 \operatorname {BesselJ}\left (0,i \sqrt {a} \sqrt {b} x\right )\right )} \\ y(x)\to -\frac {i \sqrt {b} \operatorname {BesselJ}\left (1,i \sqrt {a} \sqrt {b} x\right )}{\sqrt {a} x \operatorname {BesselJ}\left (0,i \sqrt {a} \sqrt {b} x\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*x**2*y(x)**2 - b + x*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded