Internal
problem
ID
[5177]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
583
Date
solved
:
Monday, January 27, 2025 at 10:17:55 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
Time used: 0.919 (sec). Leaf size: 673
\begin{align*}
y \left (x \right ) &= \frac {3+\frac {{\left (\left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}-c_{1}^{2}\right )}^{2}}{c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}}}{2 x^{3}} \\
y \left (x \right ) &= \frac {\left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}+c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+c_{1}^{4}}{2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} x^{3}} \\
y \left (x \right ) &= \frac {\left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}+c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+c_{1}^{4}}{2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} x^{3}} \\
y \left (x \right ) &= \frac {2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (i \sqrt {3}-1\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-c_{1}^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
y \left (x \right ) &= -\frac {-2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (1+i \sqrt {3}\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-\left (i \sqrt {3}-1\right ) c_{1}^{4}}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
y \left (x \right ) &= \frac {2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (i \sqrt {3}-1\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-c_{1}^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
y \left (x \right ) &= -\frac {-2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (1+i \sqrt {3}\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-\left (i \sqrt {3}-1\right ) c_{1}^{4}}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
y \left (x \right ) &= \frac {2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (i \sqrt {3}-1\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-c_{1}^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
y \left (x \right ) &= -\frac {-2 c_{1}^{2} \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}}+\left (1+i \sqrt {3}\right ) \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{4}/{3}}-\left (i \sqrt {3}-1\right ) c_{1}^{4}}{4 \left (x^{3}+\sqrt {c_{1}^{6}+x^{6}}\right )^{{2}/{3}} c_{1}^{2} x^{3}} \\
\end{align*}
Time used: 50.735 (sec). Leaf size: 331
\begin{align*}
y(x)\to \frac {\sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}+\frac {1}{\sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}}+1}{2 x^3} \\
y(x)\to \frac {2 i \left (\sqrt {3}+i\right ) \sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}-\frac {2 \left (1+i \sqrt {3}\right )}{\sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}}+4}{8 x^3} \\
y(x)\to \frac {-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}+\frac {2 i \left (\sqrt {3}+i\right )}{\sqrt [3]{12 c_1 x^6+2 \sqrt {6} \sqrt {c_1 x^6 \left (1+6 c_1 x^6\right )}+1}}+4}{8 x^3} \\
y(x)\to 0 \\
\end{align*}