Internal
problem
ID
[5180]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
586
Date
solved
:
Monday, January 27, 2025 at 10:18:02 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y&=0 \end{align*}
Time used: 2.017 (sec). Leaf size: 39
\[
y \left (x \right ) = \frac {\operatorname {RootOf}\left (x^{2} \textit {\_Z}^{8}-2 \textit {\_Z}^{2} c_{1} -c_{1} \right )^{6} x^{2}-2 c_{1}}{x^{2} c_{1}}
\]
Time used: 60.317 (sec). Leaf size: 1769
\begin{align*}
y(x)\to -\frac {1}{2 x^2}+\frac {\sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}{2 \sqrt {3}}-\frac {1}{2} \sqrt {\frac {2}{x^4}+\frac {2\ 2^{2/3} e^{-2 c_1}}{\sqrt [3]{3} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}-\frac {\sqrt [3]{2} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{3^{2/3} x^6}-\frac {2 \sqrt {3}}{x^6 \sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}} \\
y(x)\to -\frac {1}{2 x^2}+\frac {\sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}{2 \sqrt {3}}+\frac {1}{2} \sqrt {\frac {2}{x^4}+\frac {2\ 2^{2/3} e^{-2 c_1}}{\sqrt [3]{3} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}-\frac {\sqrt [3]{2} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{3^{2/3} x^6}-\frac {2 \sqrt {3}}{x^6 \sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}} \\
y(x)\to -\frac {1}{2 x^2}-\frac {\sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}{2 \sqrt {3}}-\frac {1}{2} \sqrt {\frac {2}{x^4}+\frac {2\ 2^{2/3} e^{-2 c_1}}{\sqrt [3]{3} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}-\frac {\sqrt [3]{2} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{3^{2/3} x^6}+\frac {2 \sqrt {3}}{x^6 \sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}} \\
y(x)\to -\frac {1}{2 x^2}-\frac {\sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}{2 \sqrt {3}}+\frac {1}{2} \sqrt {\frac {2}{x^4}+\frac {2\ 2^{2/3} e^{-2 c_1}}{\sqrt [3]{3} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}-\frac {\sqrt [3]{2} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{3^{2/3} x^6}+\frac {2 \sqrt {3}}{x^6 \sqrt {\frac {3}{x^4}-\frac {2\ 6^{2/3} e^{-2 c_1}}{\sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}+\frac {\sqrt [3]{6} \sqrt [3]{e^{-6 c_1} \left (\sqrt {48 e^{6 c_1} x^{18}+81 e^{8 c_1} x^{16}}-9 e^{4 c_1} x^8\right )}}{x^6}}}} \\
\end{align*}