Internal
problem
ID
[5191]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
597
Date
solved
:
Monday, January 27, 2025 at 10:18:39 AM
CAS
classification
:
[_exact, _rational]
Time used: 0.004 (sec). Leaf size: 316
\begin{align*}
y \left (x \right ) &= \frac {\left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}+4 x}{2 \left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {i \left (-\left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}+4 x \right ) \sqrt {3}-\left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 x}{4 \left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {i \left (\left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 x \right ) \sqrt {3}-\left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 x}{4 \left (-4 x^{3}+12 c_{1} +4 \sqrt {x^{6}+\left (-6 c_{1} -4\right ) x^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 3.957 (sec). Leaf size: 326
\begin{align*}
y(x)\to -\frac {2 x+\sqrt [3]{2} \left (x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1\right ){}^{2/3}}{2^{2/3} \sqrt [3]{x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {2^{2/3} \left (1-i \sqrt {3}\right ) \left (x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1\right ){}^{2/3}+\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x}{4 \sqrt [3]{x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {2^{2/3} \left (1+i \sqrt {3}\right ) \left (x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1\right ){}^{2/3}+\sqrt [3]{2} \left (2-2 i \sqrt {3}\right ) x}{4 \sqrt [3]{x^3+\sqrt {x^6+(-4+6 c_1) x^3+9 c_1{}^2}+3 c_1}} \\
\end{align*}