29.8.9 problem 214

Internal problem ID [4814]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 8
Problem number : 214
Date solved : Tuesday, March 04, 2025 at 07:19:35 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }&=x +y+x \,{\mathrm e}^{\frac {y}{x}} \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 20
ode:=x*diff(y(x),x) = x+y(x)+x*exp(y(x)/x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (\ln \left (-\frac {x}{x \,{\mathrm e}^{c_{1}}-1}\right )+c_{1} \right ) x \]
Mathematica. Time used: 4.404 (sec). Leaf size: 38
ode=x D[y[x],x]==x+y[x]+x Exp[y[x]/x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x \log \left (\frac {1}{2} \left (-1+\tanh \left (\frac {1}{2} (-\log (x)-c_1)\right )\right )\right ) \\ y(x)\to i \pi x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(y(x)/x) + x*Derivative(y(x), x) - x - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded