Internal
problem
ID
[5198]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
604
Date
solved
:
Monday, January 27, 2025 at 10:20:36 AM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
\begin{align*} \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 325
\begin{align*}
y \left (x \right ) &= -\frac {2 \left (a^{2}+x^{2}-\frac {\left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{2}/{3}}}{4}\right )}{\left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {\left (\frac {i \sqrt {3}}{4}+\frac {1}{4}\right ) \left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{2}/{3}}+\left (a^{2}+x^{2}\right ) \left (i \sqrt {3}-1\right )}{\left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{2}/{3}}}{4}+\left (a^{2}+x^{2}\right ) \left (1+i \sqrt {3}\right )}{\left (-12 c_{1} +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+4 x^{6}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 5.316 (sec). Leaf size: 317
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \left (\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1\right ){}^{2/3}-2 a^2-2 x^2}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (a^2+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (a^2+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to 0 \\
\end{align*}