29.22.1 problem 607

Internal problem ID [5201]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 607
Date solved : Monday, January 27, 2025 at 10:20:41 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (3 x^{2}-y^{2}\right ) y^{\prime }&=2 y x \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 313

dsolve((3*x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {1+\frac {\left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}}}{2}+\frac {2}{\left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}}}}{3 c_{1}} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{2}/{3}}-4 i \sqrt {3}-4 \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}}+4}{12 \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}} c_{1}} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}-1\right ) \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{2}/{3}}-4 i \sqrt {3}+4 \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}}-4}{12 \left (-108 c_{1}^{2} x^{2}+12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} +8\right )^{{1}/{3}} c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 60.158 (sec). Leaf size: 458

DSolve[(3 x^2-y[x]^2)D[y[x],x]==2 x y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (\frac {\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1}}{\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-e^{c_1}\right ) \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ \end{align*}