29.8.16 problem 221

Internal problem ID [4821]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 8
Problem number : 221
Date solved : Tuesday, March 04, 2025 at 07:21:10 PM
CAS classification : [_linear]

\begin{align*} \left (1+x \right ) y^{\prime }&=x^{3} \left (4+3 x \right )+y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=(1+x)*diff(y(x),x) = x^3*(3*x+4)+y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = x^{4}+c_{1} x +c_{1} +x +1 \]
Mathematica. Time used: 0.047 (sec). Leaf size: 18
ode=(1+x) D[y[x],x]==x^3(4+3 x)+y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^4+(4+c_1) x+4+c_1 \]
Sympy. Time used: 0.247 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*(3*x + 4) + (x + 1)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x + C_{1} + x^{4} + x + 1 \]