29.22.8 problem 614

Internal problem ID [5208]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 614
Date solved : Monday, January 27, 2025 at 10:20:59 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \end{align*}

Solution by Maple

Time used: 0.038 (sec). Leaf size: 24

dsolve((x+y(x))^2*diff(y(x),x) = a^2,y(x), singsol=all)
 
\[ y \left (x \right ) = a \operatorname {RootOf}\left (\tan \left (\textit {\_Z} \right ) a -\textit {\_Z} a +c_{1} -x \right )-c_{1} \]

Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 21

DSolve[(x+y[x])^2 D[y[x],x]==a^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [y(x)-a \arctan \left (\frac {y(x)+x}{a}\right )=c_1,y(x)\right ] \]