29.22.18 problem 626

Internal problem ID [5218]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 626
Date solved : Monday, January 27, 2025 at 10:22:50 AM
CAS classification : [_exact, _rational]

\begin{align*} \left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 294

dsolve((x^2-3*y(x)^2)*diff(y(x),x)+1+2*x*y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{2}/{3}}+12 x^{2}}{6 \left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{1}/{3}}} \\ y \left (x \right ) &= \frac {12 i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{2}/{3}}-12 x^{2}-\left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{2}/{3}}}{12 \left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{1}/{3}}} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}-1\right ) \left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{1}/{3}}}{12}-\frac {x^{2} \left (1+i \sqrt {3}\right )}{\left (108 x +108 c_{1} +12 \sqrt {-12 x^{6}+81 c_{1}^{2}+162 c_{1} x +81 x^{2}}\right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 4.796 (sec). Leaf size: 307

DSolve[(x^2-3 y[x]^2)D[y[x],x]+1+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{6 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}} \\ y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}}{6 \sqrt [3]{2}}+\frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-108 x^6+729 (x-c_1){}^2}-27 x+27 c_1}} \\ \end{align*}