29.22.21 problem 629
Internal
problem
ID
[5221]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
22
Problem
number
:
629
Date
solved
:
Monday, January 27, 2025 at 10:23:01 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} \left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.062 (sec). Leaf size: 428
dsolve((3*x^2+2*x*y(x)+4*y(x)^2)*diff(y(x),x)+2*x^2+6*x*y(x)+y(x)^2 = 0,y(x), singsol=all)
\begin{align*}
y \left (x \right ) &= \frac {\left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}}-\frac {11 x^{2} c_{1}^{2}}{\left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}}}-c_{1} x}{4 c_{1}} \\
y \left (x \right ) &= -\frac {11 i \sqrt {3}\, c_{1}^{2} x^{2}+i \sqrt {3}\, \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{2}/{3}}-11 c_{1}^{2} x^{2}+2 c_{1} x \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}}+\left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{2}/{3}}}{8 \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}} c_{1}} \\
y \left (x \right ) &= \frac {11 i \sqrt {3}\, c_{1}^{2} x^{2}+i \sqrt {3}\, \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{2}/{3}}+11 c_{1}^{2} x^{2}-2 c_{1} x \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}}-\left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{2}/{3}}}{8 \left (c_{1}^{3} x^{3}+8+2 \sqrt {333 c_{1}^{6} x^{6}+4 c_{1}^{3} x^{3}+16}\right )^{{1}/{3}} c_{1}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 55.875 (sec). Leaf size: 612
DSolve[(3 x^2+2 x y[x]+4 y[x]^2)D[y[x],x]+2 x^2+6 x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {1}{4} \left (\sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}-\frac {11 x^2}{\sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}}-x\right ) \\
y(x)\to \frac {1}{16} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}+\frac {22 \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}}-4 x\right ) \\
y(x)\to \frac {1}{16} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}+\frac {22 \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{x^3+2 \sqrt {333 x^6+4 e^{3 c_1} x^3+16 e^{6 c_1}}+8 e^{3 c_1}}}-4 x\right ) \\
y(x)\to \frac {1}{4} \left (\sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}-\frac {11 x^2}{\sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}}-x\right ) \\
y(x)\to \frac {1}{8} \left (\left (-1-i \sqrt {3}\right ) \sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}+\frac {11 \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}}-2 x\right ) \\
y(x)\to \frac {1}{8} \left (i \left (\sqrt {3}+i\right ) \sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}+\frac {11 \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{6 \sqrt {37} \sqrt {x^6}+x^3}}-2 x\right ) \\
\end{align*}