Internal
problem
ID
[5223]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
631
Date
solved
:
Monday, January 27, 2025 at 10:23:46 AM
CAS
classification
:
[_exact, _rational]
\begin{align*} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2}&=0 \end{align*}
Time used: 0.003 (sec). Leaf size: 769
\begin{align*}
y \left (x \right ) &= \frac {\left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}-162 c_{1} x^{6}+144 x^{6}+216 x^{5}+864 c_{1} x^{3}-27 x^{4}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}}{12}+\frac {3 x^{4}-8}{4 \left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}-162 c_{1} x^{6}+144 x^{6}+216 x^{5}+864 c_{1} x^{3}-27 x^{4}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}}+\frac {x^{2}}{4} \\
y \left (x \right ) &= \frac {24+i \left (-24+9 x^{4}-\left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{2}/{3}}\right ) \sqrt {3}-9 x^{4}+6 x^{2} \left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}-\left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{2}/{3}}}{24 \left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {24+i \left (-9 x^{4}+\left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{2}/{3}}+24\right ) \sqrt {3}-9 x^{4}+6 x^{2} \left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}-\left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{2}/{3}}}{24 \left (-108 x^{2}-144 x^{3}-432 c_{1} +27 x^{6}+12 \sqrt {-54 x^{9}+\left (-162 c_{1} +144\right ) x^{6}+216 x^{5}-27 x^{4}+864 c_{1} x^{3}+648 c_{1} x^{2}+1296 c_{1}^{2}+96}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 7.965 (sec). Leaf size: 570
\begin{align*}
y(x)\to \frac {x^2}{4}-\frac {\sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{6 \sqrt [3]{2}}+\frac {6-\frac {9 x^4}{4}}{3\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\
y(x)\to \frac {x^2}{4}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{12 \sqrt [3]{2}}-\frac {\left (1+i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\
y(x)\to \frac {x^2}{4}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{12 \sqrt [3]{2}}-\frac {\left (1-i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\
\end{align*}