29.23.20 problem 651

Internal problem ID [5242]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 23
Problem number : 651
Date solved : Monday, January 27, 2025 at 10:43:25 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }&=x^{2} y-y^{3} \end{align*}

Solution by Maple

Time used: 0.910 (sec). Leaf size: 29

dsolve(2*x*(5*x^2+y(x)^2)*diff(y(x),x) = x^2*y(x)-y(x)^3,y(x), singsol=all)
 
\[ y \left (x \right ) = \operatorname {RootOf}\left (\textit {\_Z}^{45} c_{1} x^{9}-\textit {\_Z}^{18}-6 \textit {\_Z}^{9}-9\right )^{{9}/{2}} x \]

Solution by Mathematica

Time used: 2.992 (sec). Leaf size: 216

DSolve[2 x(5 x^2+y[x]^2)D[y[x],x]==x^2 y[x]-y[x]^3,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,1\right ] \\ y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,2\right ] \\ y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,3\right ] \\ y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,4\right ] \\ y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,5\right ] \\ \end{align*}