29.9.23 problem 263

Internal problem ID [4863]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 9
Problem number : 263
Date solved : Tuesday, March 04, 2025 at 07:24:31 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} y^{\prime }&=a +b \,x^{n}+x^{2} y^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 196
ode:=x^2*diff(y(x),x) = a+b*x^n+x^2*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {2 \sqrt {b}\, \left (\operatorname {BesselY}\left (\frac {\sqrt {1-4 a}}{n}+1, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {1-4 a}}{n}+1, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right )\right ) x^{\frac {n}{2}}-\left (\sqrt {1-4 a}+1\right ) \left (\operatorname {BesselY}\left (\frac {\sqrt {1-4 a}}{n}, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {1-4 a}}{n}, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right )\right )}{2 x \left (\operatorname {BesselY}\left (\frac {\sqrt {1-4 a}}{n}, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {1-4 a}}{n}, \frac {2 \sqrt {b}\, x^{\frac {n}{2}}}{n}\right )\right )} \]
Mathematica. Time used: 0.87 (sec). Leaf size: 1434
ode=x^2 D[y[x],x]==a+b x^n + x^2 y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a - b*x**n - x**2*y(x)**2 + x**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (a + b*x**n + x**2*y(x)**2)/x**2 cannot be solved by the factorable group method