Internal
problem
ID
[4870]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
10
Problem
number
:
270
Date
solved
:
Tuesday, March 04, 2025 at 07:24:51 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x)+(x^2+y(x)^2-x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 D[y[x],x]+(x^2+y[x]^2-x)y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + (x**2 - x + y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)