Internal
problem
ID
[4875]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
10
Problem
number
:
275
Date
solved
:
Tuesday, March 04, 2025 at 07:25:03 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x)+x*y(x)+y(x)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 D[y[x],x]+x y[x]+Sqrt[y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + x*y(x) + sqrt(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)