29.24.13 problem 675

Internal problem ID [5266]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 675
Date solved : Monday, January 27, 2025 at 10:50:49 AM
CAS classification : [_exact, _rational]

\begin{align*} \left (3 x -y^{3}\right ) y^{\prime }&=x^{2}-3 y \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 21

dsolve((3*x-y(x)^3)*diff(y(x),x) = x^2-3*y(x),y(x), singsol=all)
 
\[ -\frac {x^{3}}{3}+3 x y \left (x \right )-\frac {y \left (x \right )^{4}}{4}+c_{1} = 0 \]

Solution by Mathematica

Time used: 60.157 (sec). Leaf size: 1211

DSolve[(3 x-y[x]^3)D[y[x],x]==x^2-3 y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\ y(x)\to \frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}-\frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\ y(x)\to \frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\ \end{align*}