Internal
problem
ID
[5266]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
675
Date
solved
:
Monday, January 27, 2025 at 10:50:49 AM
CAS
classification
:
[_exact, _rational]
Time used: 0.007 (sec). Leaf size: 21
\[
-\frac {x^{3}}{3}+3 x y \left (x \right )-\frac {y \left (x \right )^{4}}{4}+c_{1} = 0
\]
Time used: 60.157 (sec). Leaf size: 1211
\begin{align*}
y(x)\to -\frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}-\frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}} \\
y(x)\to \frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\
y(x)\to \frac {\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {12 \sqrt {6} x}{\sqrt {\frac {4 x^3+\left (243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}\right ){}^{2/3}+12 c_1}{\sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}}-\frac {2}{3} \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}-\frac {8 \left (x^3+3 c_1\right )}{3 \sqrt [3]{243 x^2-\frac {1}{432} \sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}} \\
\end{align*}