29.24.25 problem 687

Internal problem ID [5278]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 687
Date solved : Tuesday, January 28, 2025 at 02:41:42 PM
CAS classification : [_rational]

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 405

dsolve((x^2-x^3+3*x*y(x)^2+2*y(x)^3)*diff(y(x),x)+2*x^3+3*x^2*y(x)+y(x)^2-y(x)^3 = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{2}/{3}}-12 c_{1} -12 x}{6 \left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{1}/{3}}} \\ y \left (x \right ) &= -\frac {\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{2}/{3}}+\left (i \sqrt {3}-1\right ) \left (x +c_{1} \right )}{\left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{1}/{3}}} \\ y \left (x \right ) &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{2}/{3}}}{12}+\left (1+i \sqrt {3}\right ) \left (x +c_{1} \right )}{\left (-108 x^{3}-108 c_{1} x +12 \sqrt {81 x^{6}+162 c_{1} x^{4}+12 x^{3}+\left (81 c_{1}^{2}+36 c_{1} \right ) x^{2}+36 c_{1}^{2} x +12 c_{1}^{3}}\right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 8.910 (sec). Leaf size: 368

DSolve[(x^2-x^3+3 x y[x]^2+2 y[x]^3)D[y[x],x]+2 x^3+3 x^2 y[x]+y[x]^2-y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{2} (x+c_1)}{\sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}}-\frac {\sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}}{3 \sqrt [3]{2}} \\ y(x)\to \frac {2^{2/3} \left (1-i \sqrt {3}\right ) \left (27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x\right ){}^{2/3}-6 i \sqrt [3]{2} \left (\sqrt {3}-i\right ) (x+c_1)}{12 \sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}} \\ y(x)\to \frac {2^{2/3} \left (1+i \sqrt {3}\right ) \left (27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x\right ){}^{2/3}+6 i \sqrt [3]{2} \left (\sqrt {3}+i\right ) (x+c_1)}{12 \sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}} \\ y(x)\to -x \\ \end{align*}