29.24.27 problem 689

Internal problem ID [5280]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 689
Date solved : Monday, January 27, 2025 at 11:03:34 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (x^{3}+a y^{3}\right ) y^{\prime }&=x^{2} y \end{align*}

Solution by Maple

Time used: 0.028 (sec). Leaf size: 23

dsolve((x^3+a*y(x)^3)*diff(y(x),x) = x^2*y(x),y(x), singsol=all)
 
\[ y \left (x \right ) = {\left (\frac {1}{a \operatorname {LambertW}\left (\frac {x^{3} c_{1}}{a}\right )}\right )}^{{1}/{3}} x \]

Solution by Mathematica

Time used: 16.053 (sec). Leaf size: 113

DSolve[(x^3+a y[x]^3)D[y[x],x]==x^2 y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x}{\sqrt [3]{a} \sqrt [3]{W\left (\frac {x^3 e^{-\frac {3 c_1}{a}}}{a}\right )}} \\ y(x)\to -\frac {\sqrt [3]{-1} x}{\sqrt [3]{a} \sqrt [3]{W\left (\frac {x^3 e^{-\frac {3 c_1}{a}}}{a}\right )}} \\ y(x)\to \frac {(-1)^{2/3} x}{\sqrt [3]{a} \sqrt [3]{W\left (\frac {x^3 e^{-\frac {3 c_1}{a}}}{a}\right )}} \\ y(x)\to 0 \\ \end{align*}