Internal
problem
ID
[5283]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
693
Date
solved
:
Monday, January 27, 2025 at 11:03:51 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=\left (2 x^{3}-x^{2} y+y^{3}\right ) y \end{align*}
Time used: 0.013 (sec). Leaf size: 279
\begin{align*}
y \left (x \right ) &= \frac {\left (\left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{2}/{3}}-6 \ln \left (x \right )-6 c_{1} \right ) x}{3 \left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {x \left (\left (\frac {1}{6}+\frac {i \sqrt {3}}{6}\right ) \left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{2}/{3}}+\left (\ln \left (x \right )+c_{1} \right ) \left (i \sqrt {3}-1\right )\right )}{\left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {\left (\frac {\left (i \sqrt {3}-1\right ) \left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{2}/{3}}}{6}+\left (\ln \left (x \right )+c_{1} \right ) \left (1+i \sqrt {3}\right )\right ) x}{\left (54+6 \sqrt {6 \ln \left (x \right )^{3}+18 \ln \left (x \right )^{2} c_{1} +18 \ln \left (x \right ) c_{1}^{2}+6 c_{1}^{3}+81}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 51.721 (sec). Leaf size: 362
\begin{align*}
y(x)\to \frac {-6^{2/3} x^2 \log (x)+6^{2/3} c_1 x^2+\sqrt [3]{6} \left (9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}\right ){}^{2/3}}{3 \sqrt [3]{9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}}} \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}}}{6^{2/3}}+\frac {\left (1+i \sqrt {3}\right ) x^2 (\log (x)-c_1)}{\sqrt [3]{6} \sqrt [3]{9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}}} \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) x^2 (-\log (x)+c_1)}{\sqrt [3]{6} \sqrt [3]{9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{9 x^3+\sqrt {3} \sqrt {x^6 \left (27+2 (\log (x)-c_1){}^3\right )}}}{6^{2/3}} \\
\end{align*}