29.25.2 problem 699

Internal problem ID [5289]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 25
Problem number : 699
Date solved : Monday, January 27, 2025 at 11:04:33 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \end{align*}

Solution by Maple

Time used: 0.014 (sec). Leaf size: 34

dsolve((5*x-y(x)-7*x*y(x)^3)*diff(y(x),x)+5*y(x)-y(x)^4 = 0,y(x), singsol=all)
 
\[ x +\frac {\frac {y \left (x \right )^{5}}{5}-\frac {5 y \left (x \right )^{2}}{2}-c_{1}}{\left (y \left (x \right )^{3}-5\right )^{2} y \left (x \right )} = 0 \]

Solution by Mathematica

Time used: 47.280 (sec). Leaf size: 342

DSolve[(5 x-y[x]-7 x y[x]^3)D[y[x],x]+5 y[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,1\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,2\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,3\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,4\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,5\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,6\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,7\right ] \\ y(x)\to 0 \\ y(x)\to -\sqrt [3]{-5} \\ y(x)\to \sqrt [3]{5} \\ y(x)\to (-1)^{2/3} \sqrt [3]{5} \\ \end{align*}