Internal
problem
ID
[5297]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
25
Problem
number
:
707
Date
solved
:
Monday, January 27, 2025 at 11:04:55 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
Time used: 0.127 (sec). Leaf size: 25
\[
y \left (x \right ) = \operatorname {RootOf}\left (x^{9} \textit {\_Z}^{4}+3-{\mathrm e}^{\frac {9 c_{1}}{4}} \textit {\_Z} \right ) x^{3}
\]
Time used: 60.135 (sec). Leaf size: 1021
\begin{align*}
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}+\frac {1}{2} \sqrt {-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}}} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}}}}-\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {4 \sqrt [3]{2} x^3}{\sqrt [3]{9 c_1{}^2-\sqrt {-256 x^9+81 c_1{}^4}}}} \\
\end{align*}