Internal
problem
ID
[5300]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
25
Problem
number
:
710
Date
solved
:
Monday, January 27, 2025 at 11:05:07 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
\begin{align*} \left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime }&=\left (2+y^{3}\right ) y \end{align*}
Time used: 0.013 (sec). Leaf size: 27
\[
x -\frac {\left (-y \left (x \right )^{2}+c_{1} \right ) y \left (x \right )^{2}}{2+y \left (x \right )^{3}} = 0
\]
Time used: 60.215 (sec). Leaf size: 2021
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{2}+\frac {x \left (x^2+4 c_1\right )}{4 \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}}+\frac {4 c_1}{3}}-\frac {x}{4} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}+\frac {1}{2} \sqrt {-\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{2}+\frac {x \left (x^2+4 c_1\right )}{4 \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}}+\frac {4 c_1}{3}}-\frac {x}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}-\frac {1}{2} \sqrt {-\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{2}-\frac {x \left (x^2+4 c_1\right )}{4 \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}}+\frac {4 c_1}{3}}-\frac {x}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}+\frac {1}{2} \sqrt {-\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}-\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{2}-\frac {x \left (x^2+4 c_1\right )}{4 \sqrt {\frac {\sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} \left (24 x+c_1{}^2\right )}{3 \sqrt [3]{54 x^3+\sqrt {\left (54 x^3+144 c_1 x-2 c_1{}^3\right ){}^2-4 \left (24 x+c_1{}^2\right ){}^3}+144 c_1 x-2 c_1{}^3}}+\frac {x^2}{4}+\frac {2 c_1}{3}}}+\frac {4 c_1}{3}}-\frac {x}{4} \\
\end{align*}